

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO **FACULTAD DE INGENIERÍA** DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN

PRACTICAS LABORATORIO DE MICROCOMPUTADORAS Basadas en el Microcontrolador PIC16F877

RUBÉN ANAYA GARCÍA JESÚS SAVAGE CARMONA CARLOS MUNIVE VÁZQUEZ

CIUDAD UNIVERSITARIA

Introducción

Se ha diseñado el siguiente material para su uso en el laboratorio de microcomputadoras, con la idea principal de servir como una guía a los alumnos que cursan el laboratorio, se proponen un conjunto de 9 prácticas, las cuales contienen información introductoria, que servirá al alumno como antecedente al inicio de la realización de cada sesión y con esta forma clarificar los objetivos de la práctica.

Se ha propuesto el uso del microcontrolador PIC16F877; no siendo este el único que podría atender, ya que en realidad se intenta poner en práctica los conocimientos que en la teoría se aprenden, por lo que los ejercicios aquí propuestos inducen y llevan al alumno a un mejor entendimiento de estos dispositivos y a un mayor aprovechamiento de los mismos.

Se iniciará con la familiarización del lenguaje ensamblador del PIC y la utilización del ambiente MPLAB, el cuál servirá para editar, ensamblar y simular los programas capturados. La práctica dos enfatizará al uso de un sistema de desarrollo con un microcontrolador, donde se desea que el alumno ejecute directamente programas previamente ensamblados y en algunos casos simulados directamente en la tarjeta física, así mismo de la manera usada para cargar los programas en el dispositivo.

Las prácticas 3, 4 y 5 afianzará el uso de los puertos paralelos mediante posibles interfaces que pueden conectar al el microcontrolador de manera sencilla; generando salidas de despliegue a través de leds, controlar motores de corriente directa, tomando lecturas de switches y sensores externos; para el término de éstas sesiones el alumno pueda tener una visión más amplia de la infinidad de aplicaciones que se pueden realizar con los puertos paralelos.

La práctica seis mostrará al alumno las ventajas de contar con un convertidor analógicodigital dentro de los recursos del microcontrolador, además de ampliar las posibilidades de aplicación de este recurso.

En la práctica siete aplicará la comunicación serie en la modalidad asíncrona, con la finalidad que el alumno controle las funciones del PIC por medio de otro dispositivo serie, que puede ser la computadora personal.

Una vez que el alumno ha logrado controlar y programar los recursos de un microcontrolador, mediante la programación en lenguaje ensamblador, se proponen dos prácticas en las cuales el alumno resolverá los ejercicios propuestos mediante la programación en lenguaje C. La práctica ocho usará puertos paralelos y el puerto serie, mientras que la práctica nueve empleará el convertidor A/D y las aplicaciones utilizando programación mediante la técnica de programación con interrupciones.

Al concluir las prácticas, el alumno deberá haber comprendido las ventajas que se tiene al realizar aplicaciones con microcomputadoras así mismo describir los diferentes elementos constituidos de éstas.

Contenido

Practicas	
Practica No. 1	Introducción General a un microcontrolador.
Practica No. 2	Sistema mínimo de microcontrolador y puertos paralelos I.
Practica No. 3	Puertos Paralelos II (Control de acciones).
Practica No. 4	Puertos Paralelos III (Control de motores de CD).
Practica No. 5	Puertos Paralelos IV (Sensores ópticos).
Practica No. 6	Convertidor Analógico Digital.
Practica No. 7	Interfaz de Comunicación Serial Asíncrona (SCI).
Practica No. 8	Programación lenguaje C.
Practica No. 9	Programación lenguaje C.
	Proyecto Final

Con las prácticas propuestas se desea cubrir los objetivos que la teoría demanda los cuales se reproducen en este manual:

Objetivo de la teoría de Microcomputadoras

El alumno aprenderá y aplicará los conocimientos de la teoría y funcionamiento de los microprocesadores y su interconexión con diferentes circuitos periféricos para la construcción y funcionamiento de microcomputadoras. Diseñará y construirá aplicaciones utilizando microprocesadores y sus periféricos para diferentes sistemas, simulando aplicaciones industriales en tiempo real, así como aplicaciones científicas.

Atendiendo al siguiente temario

- 1. Conceptos básicos
- 2. Conjunto de instrucciones
- 3. Modos de direccionamiento
- 4. Señales de control y diseño de un sistema con microprocesadores
- 5. Periféricos e interfaces con microprocesadores
- 6. Técnicas de diseño de sistemas con microprocesadores
- 7. Características generales de microprocesadores de 16 y 32 bits

Laboratorio de Microcomputadoras Práctica No. 1 Introducción General a un Microcontrolador PIC16F877

Objetivo. Familiarizar al alumno en el conocimiento del ensamblador, del simulador, el conjunto de instrucciones de un microcontrolador y ejecutar programas en tiempo de simulación.

Introducción

Algunas de las características más importantes que tiene el microcontrolador son:

- 8K de memoria FLASH
- 368 bytes de memoria RAM
- 255 bytes de memoria EEPROM
- 35 instrucciones
- 5 puertos paralelos (A, B, C, D, E)
- Convertidor Analógico Digital
- Comunicación Serie Asíncrona
- Comunicación Serie Síncrona (paralela, I2C)
- Tres módulos temporizadores
- Dos módulos CCP que pueden operar como Comparación, Captura o PWM
- 14 posibles fuentes de interrupción

Los registros disponibles para el programador son:

W	Registro de trabajo W						
PC	Registro Contador de Programa						
STATUS	Registro de banderas						

Tanto los registros PC y STATUS están ubicados en localidades de memoria RAM, dentro de los bancos en los que se divide los 368 bytes de memoria de datos, como se muestra a continuación.

						,	⊢ile \ddress
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD (%	08h	TRISD (1)	88h		108h		188h
PORTE (1)	09h	TRISE (*)	89h		109h		189h
PCLATH	QAh	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	CDh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	OFh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	FEb	General Purpose Register 80 Bytes	18Eb	General Purpose Register 80 Bytes	1EFh
	7Fh	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1F0h 1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Figura 1.1 Mapa de memoria de datos

El registro **STATUS**, además de indicar el estado de lo que ocurrió en la última operación, se dispone de banderas que permiten seleccionar el banco de memoria RAM donde se desea acceder.

RP1	RP0	BANCO	UBICACIÓN
0	0	0	00H-7FH
0	1	1	80H-FFH
1	0	2	100H-17FH
1	1	3	180H-1FFH

Tabla 1.1 Selección del banco de memoria RAM

Una pl	antilla de programa sería:	
	processor 16f877	;Indica la versión de procesador
	include <p16f877.inc></p16f877.inc>	;incluye la librería de la versión del procesador
	org 0H	;Carga al vector de RESET la dirección de inicio
	goto inicio	
inicio:	org 05H	;Dirección de inicio del programa del usuario
	•••••	
	•••••	
	end	;directiva de fin de programa

La llamada gama baja y media de PIC's a la que pertenece el PIC16F877 tiene el siguiente conjunto de instrucciones.

Mnemor	nic,	Description	Cycles	14-Bit Opcode				Status	Notes	
Operan	ds			MSb			LSb	Affected		
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	t.d.	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWE	f, d	AND W with f	1	00	0101	dfff	ffff	z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	z	2	
CLRW	-	Clear W	1	00	0001	0,000	XXXX	z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	1111		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	tttt	z	1,2	
INCESZ	f. d.	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	4£££	ffff	z	1,2	
MOV/WF	f	Move W to f	1	.00	0000	1665	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00-	1101	dfff	ffff	C	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	11,00	dfff	ffff	C	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	TTTT	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	tttt		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	IS					
BCF	f, b.	Bit Clear f	1	01	00bb	bfff	EEEE		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
		LITERAL AND CONTROL	OPERATI	IONS						
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	90	0000	0110	01,00	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	z		
MOVLW	k.	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	0.0	0000	0000	1000			
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k.	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		

Figura 1.2 Conjunto de instrucciones del PIC 16F877

Herramienta de desarrollo MPLAB

El MPLAB es uno de los llamados Ambientes de Desarrollo Integrado IDE, que permite escribir, ensamblar y simular un programa, e incluso usando cierto hardware, se puede simular en circuito y programar al microcontrolador. Este programa lo puedes bajar de manera gratuita de la dirección electrónica de Microchip(www.microchip.com).

Al ejecutar MPLAB, presenta una pantalla como la siguiente:

MPLAB IDE v6.61					
File Edit View Project Deb	ugger Programmer	Tools Configure	Window	Help	
🗅 📽 🖬 🐰 🐂 🖷	a # 8				
Checksum: 0×1bff	💣 📽 🖫 🦷				
🗖 Untitled Wor 🔳 🕻					
🗖 Output					
Build Version Control	Find in Files				
<u>µ</u>					J
P					
	PIC16F877	W:0	z de	c	E g

Figura 1.3 Entorno de MPLAB

En el menú **File** seleccionar **New**, entonces aparece la ventana de trabajo con el encabezado **Untitled**, escribir el programa en esta área, una vez terminado, salvarlo usando nuevamente el menú File y el submenú **Save as** del tipo ASM.

Para ensamblar el programa usar el comando **Project**, buscar el submenú **Quickbuild**, donde aparecerá incluido el nombre del programa a ensamblar que es el que está activo en el área de captura.

MPLAB IDE	v6.61	
File Edit View	Project Debugger Programmer Tools Con	figure Window Help
0 🛩 🖬	Project Wizard	
Checksum:	New Open Close • • • • • • • • • • • • • • • • • • •	
	Quickbuild p11.asm ude	<pl6f877.inc></pl6f877.inc>
	Build Options H '25' H'26'	
	Find in Project Files H' 27'	:g 0
	Save Project g Save Project As	poto inicio
	Add Files to Project or Remove File From Project > mov1w	rg 5 ≡ • h'05'
	Select Language Toolsuite movwf Set Language Tool Locations goto	L inicio
	Version Control	
		>
		▼
	PIC16F877 W	V:0 zdcc t,;;

Figura 1.4 Ensamblar un programa

Si no existe problema en el proceso de ensamblado, genera el mensaje **BUILD SUCCEEDED**, lo cuál índica que el proceso de ensamblado ha concluido satisfactoriamente.

El siguiente proceso será simular el programa, para lo cuál del menú se elige el comando **View** y las opciones requeridas.

🐻 MPLA	3 IDE v6.61	
File Edit	View Project Debugger Programmer Tools Configure Window Help	
] 🗅 🖨	Output	
Check	Toolbars 🔸 🦉 🏙	
C:\	1 Disassembly Listing 2 Hardware Stack 3 Program Memory 4 File Registers 5 EEPROM 6 LCD Pixel 7 Watch 8 Special Function Registers org 0	*
	Untitled	
		^
<		>
	PIC16F877 W:0 z dc c	L d

Figura 1.5 Selección de ventanas de visualización para el proceso de simulación

Por lo general solo se selecciona **File Registers**, el cuál muestra los registros y sus valores actuales; para modificar el contenido de alguna localidad, sólo se tiene que escribir el valor deseado y si el programa genera un valor, este será actualizado.

MPLAB IDE	v6.6	1														×
File Edit View	Proj	ect	Debug	gger	Prog	ramm	er Ti	pols	Confi	igure	Win	dow	Help			
🗅 🚅 🗐	Ж		8	8	酋	?										
Checksum	ave Fi	e 03e	ן נ	ď	2		ik n									
C:\\p11															<	
File Regis	ters														×	
Address	00	01	02	03	04	05	06	07	08	09	OA	OB	0C	OD	>	
0000		00	00	00	00	00	00	00	00	00	00	00	00	00		
0010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ξ	
0020	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0030	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0040	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0050	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0060	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0070		00	00	00	00	00	00	00	00	00	00	00	00	00		
0000		00	00	00	00				00	00						
0030		00	00	00	00		00					00		00.	~	
<				Ш										>		
Hex Symb	olic															
				PIC1	6E877				W:	0		z de r				

Figura 1.6 Mapa de memoria RAM

Para iniciar el proceso de simulación se debe seleccionar el simulador **MPLAB SIM**, accediendo al menú principal, dar click en **Debugger**, luego seleccionar **Select Tool** y entonces **Mplab Sim**; se habilitarán los iconos de simulación.

1 € € € 44 11 4	
-----------------	--

Figura 1.7 Iconos de simulación

Permitirá iniciar el proceso de simulación por instrucción o en forma continua, también es posible simular usando teclas de función, acceder al comando Debbuger del menú principal.

Desarrollo. Para cada uno de los siguientes ejercicios, realizar los programas solicitados y simular el funcionamiento de ellos.

1.- Siguiendo las indicaciones previas, escribir el siguiente programa, ensamblar y simular el funcionamiento de este.

processor 16f877 include <p16f877.inc> K equ H'26' L equ H'27' org 0 goto inicio

org 5 inicio: movlw h'05' addwf K,0 movwf L goto inicio end

Ingresar un dato de 8 bits al la dirección reservada a la variable K.

2.- Modificar el programa anterior, para que ahora los datos que operará se encuentren en las localidades reservadas para J y K respectivamente y el resultado almacenarlo en otras direcciones, reservadas para C1 y R1 donde C1 representará el valor de la bandera de acarreo y R1 el resultado.

3.- Realice un programa que ejecute la siguiente secuencia, misma que deberá ver en la dirección de memoria de su elección.

Secuencia:

#\$01 #\$02 #\$04 #\$08 #\$10 #\$20 #\$40 #\$40

4.- Desarrollar un programa que presente la cuenta en numeración decimal en la localidad de memoria de su elección, como se indica a continuación.

```
→ 00-01-02-03-04-05-06-07-08-09-10-11-12-13-14-15-16-17-18-19-20
```

5.- Elaborar un programa que encuentre el número menor, de un conjunto de datos ubicados entre las localidades de memoria **20h** a **40h**; mostrar el valor en la dirección **41h**.

Laboratorio de Microcomputadoras Práctica No. 2 Sistema mínimo microcontrolador PIC16F877

Objetivo. Conocer la estructura y características de la tarjeta que se dispone en el laboratorio, el software de comunicación, aplicaciones con puertos paralelos trabajando como salida y la ejecución de un programa en tiempo real.

Introducción

El microcontrolador PIC tiene 5 puertos paralelos, denominados A, B, C, D y E, todos ellos se pueden configurar para operar como puerto de salida o entrada.

Puerto	Tamaño	Función	TRISX	PORTX
Α	6	E/S	85H	05H
В	8	E/S	86H	06H
С	8	E/S	87H	07H
D	8	E/S	88H	08H
Ε	3	E/S	89H	09H

Al emplear un puerto paralelo, lo primeo que se debe de hacer es configurar su función, esto se realiza en las posiciones de memoria RAM denominados **TRISX** los cuales están ubicados en el banco número 1. Una vez ubicado en este banco se realiza la configuración, bajo la siguiente convención.

'0' Configura el bit del puerto como salida'1' Configura el bit como entrada

Después que se ha configura todo el puerto, regresar al banco cero para enviar o recibir información a través de los registros de datos **PORTX**, a continuación se presenta las instrucciones que realizan lo anterior:

	processor 16f877	;Indica la versión de procesador
	include <p16f877.inc></p16f877.inc>	;Incluye la librería de la versión del procesador
	org 0H	;Carga al vector de RESET la dirección de inicio
	goto inicio	
inicio:	org 05H	;Dirección de inicio del programa del usuario
	BSF STATUS,RP0	;Cambia la banco 1
	BCF STATUS,RP1	
	MOVLW 0	;Configura al puerto B como salida
	MOVWF TRISB	
	BCF STATUS,RP0	;Regresa al banco cero
	end	;Directiva de fin de programa

Programación del microcontrolador PIC.

Las tarjetas que se cuentan en el laboratorio han sido programadas previamente con el código denominado Bootloader, el cuál permite cargar los programas del usuario una vez ensamblados al microcontrolador, haciendo uso de la comunicación serie; otra opción es utilizar un programador externo, en este caso tener cuidado al extraer y colocar sus circuitos de su tarjeta, en manual solo se describirá el primer método.

Ejecutar el programa **PICDOWNLOADER**, se mostrará una pantalla como en la figura 2.1a, seleccionar el programa que se desea cargar, la velocidad deberá ser de **19200** y comprobar su puerto serie disponible, en la mayoría de los casos será **COM1**. Dar click en **WRITE** y comenzará a mostrar el proceso de cargado, cuando termine mostrará un despliegue como en la figura 2-1b.

II PIC downloader 1.08	
File eje1.HEX	(Search (F2)
Port COM1 💌 19200 💌 Bd	🔽 EEPROM
Info	
Write (F4)	cel (ESC)
© 2000 EHL elektronika, Petr I http://www.ehl.cz/pic	Kolomaznik FREEWARE

Figura 2.1a Picdownloader

II PIC downloader 1.08	
File eje1.HEX	Search (F2)
Port COM1 💌 19200 💌 Bd	🔽 EEPROM
Info	
Write (F4) Cano	el (ESC)
© 2000 EHL elektronika, Petr K	Colomaznik
http://www.ehl.cz/pic	FREEWARE

Figura 2.1b Programa cargado completamente

Desarrollo. Para cada uno de los siguientes ejercicios, realizar los programas solicitados y comprobar el funcionamiento de ellos.

1.- Escribir, comentar e indicar que hace el siguiente programa.

	processor 16f877		
	include <p16f877.inc></p16f877.inc>	loop2	bsf PORTB,0 call retardo
contad	or equ h'20'		bcf PORTB,0
valor1	equ h'21'		call retardo
valor2	equ h'22'		goto loop2
valor3	equ h'23'		
cte1 ec	ju 20h	retardo	o movlw cte1
cte2 ec	ju 50h		movwf valor1
cte3 ec	ju 60h	tres	movlw cte2
			movwf valor2
	org 0	dos	movlw cte3
	goto inicio		movwf valor3
		uno	decfsz valor3
	org 5		goto uno
inicio	bsf STATUS,5		decfsz valor2
	BCF STATUS,6		goto dos
	MOVLW H'0'		decfsz valor1
	MOVWF TRISB		goto tres
	BCF STATUS,5		return
	clrf PORTB		END

2.- Ensamblar y cargar el programa anterior en memoria del microcontrolador.

3.- Modificar el programa anterior, para que ahora se actualice el contenido de todos los bits del puerto B y se genere una rutina de retardo de un segundo.

4.- Realizar un programa que muestre la siguiente secuencia en el puerto B con retardos de ¹/₂ segundo.

a	•
Secue	ncia.
Decue	nona.

↓
#\$80
#\$40
#\$20
#\$10
#\$08
#\$04
#\$02
#\$P1
↓

5.- Realizar un programa que muestre un contador binario por el puerto paralelo B, desde su valor mínimo B'00000000' hasta el máximo B'11111111' y se repita nuevamente el contador; usar retardos de ½ segundo.

Laboratorio de Microcomputadoras Práctica No 3 Puertos Paralelos II (Control de acciones)

Objetivo. Emplear los puertos paralelos que contiene un microcontrolador para realizar funciones de control, configurando estos como entrada y salida.

Introducción

Cuando el microcontrolador PIC será configurado como entrada, se recomienda limpiar el contenido del registro de datos del puerto mediante la instrucción **CLRF PORTX**, esto con la finalidad de iniciar los latches de datos del puerto en cuestión, con esta instrucción se configurará al puerto de manera correcta.

Además de lo anterior, para el caso del puerto A y E se requiere indicar en el registro **ADCON1** ubicado en el banco 1 que se desea utilizar como E/S digitales, por lo que se escribirá un **06H** o **07H** en dicho registro, para posteriormente cargar el dato de configuración al registro **TRISA** o **TRISE**.

Ejemplo

	processor 16f877	;Indica la versión de procesador
	include <p16f877.inc></p16f877.inc>	;Incluye la librería de la versión del procesador
	org 0H	;Carga al vector de RESET la dirección de inicio
	goto inicio	
	org 05H	;Dirección de inicio del programa del usuario
inicio:	CLRF PORTA	
	BSF STATUS,RP0	;Cambia la banco 1
	BCF STATUS,RP1	
	MOVLW 06H	;Configura puertos A y E como digitales
	MOVWF ADCON1	
	MOVLW 3FH	;Configura el puerto A como entrada
	MOVWF TRISA	
	BCF STATUS,RP0	;Regresa al banco cero
	end	

Desarrollo. Para cada uno de los siguientes apartados, realizar los programas solicitados y comprobar el funcionamiento de ellos.

1.- Empleando dos puertos paralelos del microcontrolador PIC, uno de ellos configurado como entrada y el otro como salida; realizar un programa que de acuerdo al valor del bit menos significativo del puerto \mathbf{A} , se genere la acción indicada en el puerto \mathbf{B} .

Valor PA0	Acción puerto B
0	0000000
1	11111111

Tabla 3.1 Control de salidas controladas por un bit

2.- Realizar un programa, el cuál realice las siguientes acciones de control, para lo cuál requiere trabajar un puerto de entrada y otro puerto de salida, usar los sugeridos en el ejercicio anterior; generar retardos de ½ seg., en las secuencias que lo requieran.

DATO	ACCION	Ejecución
\$00	Todos los leds apagados	00000000
\$01	Todos los leds encendidos	11111111
\$02	Corrimiento del bit más significativo hacia	10000000
	la derecha	01000000
		00100000
		00000001
\$03	Corrimiento del bit menos significativo	00000001
	hacia la izquierda	00000010
		00000100
		10000000
\$04	Corrimiento del bit más significativo hacia	10000000
	la derecha y a la izquierda	01000000
		••••
		00000001
		00000010
		10000000
\$05	Apagar y encender todos los bits.	00000000
		11111111

Tabla 3.2 Control de salidas completo

Laboratorio de Microcomputadoras Practica No. 4 Puertos Paralelos III (Control de Motores de CD)

Objetivo. Emplear los puertos paralelos que contiene un microcontrolador, para controlar la operación de dos motores de corriente directa.

Introducción

El circuito que nos permite entregar la potencia y señales de control a motores de corriente directa es el L293 B/D o en caso de requerir mayor corriente usar el L298; se sugiere para una mayor información revisar la hoja de datos de este circuito.

El circuito tiene dos terminales para alimentación, una de ellas es para el propio dispositivo, el cuál debe ser de 5 volts, y otra para la tensión en los motores la cual puede ser desde 0.2 volts hasta 32 volts (de acuerdo al voltaje de operación del motor), así mismo permite tener el control de la velocidad de rotación del motor, mediante las terminales EN1 y EN2; por último la dirección de rotación se establece de acuerdo al nivel lógico existente entre las terminales identificadas como DIR1 y DIR2 para un motor, DIR3 y DIR4 para el otro motor.

Por ejemplo si EN=1, Dir1=1 y Dir2=0, el motor girará hacia un sentido y cuando DIR1=0 y DIR2=1, el motor girará en sentido contrario. El motor se mantiene parado cuando EN1=0 o el valor en Dir1= Dir2.

A manera de protección del microcontrolador, se recomienda contar con dos fuentes de alimentación independientes (una para el PIC y otra para el circuito L293B) y contar con una etapa de acoplamiento óptico para tener un mejor desempeño del sistema.

Circuito 4.1. Driver L293 empleando optoacopladores

Instrucciones para uso de los módulos del laboratorio:

- Se alimentará el driver de motores con voltaje superior a 8 volts, ya que cuenta con un regulador de voltaje LM7805.
- Un motor se controlará a través de las señales indicadas como Vel1 (EN1) y Dir ¹/₂, para que funcione el motor la señal Vel1 deberá estar en alto y Dir ¹/₂ podrá valer 0 o 1 lo cuál indicará el sentido de giro; de igual forma para el otro motor.
- Por lo tanto solo requiere de 2 señales de control para cada motor, es decir cuatro en total, que serán enviadas por el puerto paralelo seleccionado.
- De acuerdo a la tarjeta empleada debe identificar en que pines del puerto se encuentran asignadas estas señales (En1 En2 Dir ¹/₂ Dir ³/₄).
- En los sistemas con el driver integrada en la tarjeta de puertos están asignados en los cuatro bits menos significativos, mientras que en las otras tarjetas en los cuatro bits más significativos.

Desarrollo. Utilizando el circuito de potencia de motores de corriente directa y el sistema de desarrollo del microcontrolador PIC, realizar los programas solicitados.

1.- De acuerdo a la asignación de la tarjeta del driver de motores realizar un programa, el cual permita controlar el funcionamiento y sentido de giro de cada uno de ellos por separado, a través del puerto paralelo A, el puerto B deberá mandar las señales al driver, como se indica en la tabla 4.1.

Entrada binaria	Motor		Sentido de giro
PuertoA	Izquierdo	Derecho	Puerto B
000000	OFF	OFF	Paro
000010	OFF	ON	Horario
000100	OFF	ON	Antihorario
001000	ON	OFF	Horario
010000	ON	OFF	Antihorario

Tabla 4.1

2.- Considerando la información y los circuitos del ejercicio anterior, realizar un programa que de acuerdo a una señal de control ingresada por el puerto A, se genere la acción indicada en la tabla 4.2.

DATO	ACCION		
Puerto A	MOTOR M1	MOTOR M2	
\$00	PARO	PARO	
\$01	DERECHA	DERECHA	
\$02	IZQUIERDA	IZQUIERDA	
\$03	DERECHA	IZQUIERDA	
\$04	IZQUIERDA	DERECHA	
E 11 4 2			

Laboratorio de Microcomputadoras Práctica No. 5 Puertos Paralelos IV (Lectura de sensores ópticos)

Objetivo: Emplear los puertos paralelos, para hacer lecturas de señales externas (sensores reflectivos) con el microcontrolador y realizar operaciones de acuerdo a los valores recibidos.

Introducción

Un sensor de efecto reflectivo consta de un led infla-rojo y de un fototransistor, es usado como un sistema de detección de objetos, lectura de encoders y en aplicaciones de robótica, entre otros. Para esta práctica se desea obtener es el rebote que se produce cuando el led emite el haz infla-rojo y lo detecte el fototransistor, el cuál operará en las regiones de corte y saturación; esta señal se adecuará para obtener un nivel lógico, mediante un circuito comparador que opera de la siguiente manera:

Si V+_(Vref) es mayor a V-_(Vsensor) => V_{salida} = 5 Volts Si V-_(Vsensor) es mayor a V+_(Vref) => V_{salida} = 0 Volts

El circuito siguiente muestra un sistema de detección opto-reflectivo, para uso en robots seguidores de línea.

Figura 5.1 Sensores opto-reflectivos

Desarrollo: Realizar los apartados siguientes.

1.- Conectar la tarjeta de sensores reflectivos al puerto paralelo A y la tarjeta de leds al puerto paralelo B.

2.- Realizar un programa, de tal forma que indique cual sensor refleja la luz infla-roja mediante el equivalente despliegue al puerto B, representado mediante la siguiente tabla.

Tomar en cuenta que cuando es detectado el reflejo, el microcontrolador recibe un '1'.

ENTRAD	AS

-	-	
SΔL	IDAS.	
0/12		

Sensor Izquierdo PA2	Sensor Central PA1	Sensor Derecho PA0
Ν	Ν	Ν
Ν	Ν	В
Ν	В	Ν
Ν	В	В
В	Ν	Ν
В	Ν	В
В	В	N
В	В	В

PB3	PB2	PB1	PB0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1

Tabla 5.1 N _(Línea negra) - '0' B _(Línea blanca) - '1'

3. Realizar un programa que de acuerdo a la entrada generada por los sensores, se controle la operación de los motores, tal como se muestra en la siguiente tabla.

ENTRADAS			ACCION				
Sensor Izquierdo	Sensor Central	Sensor Derecho	MOTOR IZQUIERDO	MOTOR DERECHO			
В	Ν	N	ATRÁS	ADELANTE			
N	В	N	ADELANTE	ADELANTE			
N	N	В	ADELANTE	ATRÁS			
N	N	N	PARO	PARO			

Tabla 5.2

Nota. Considerar que los sensores están conectados en la parte baja del puerto A y los bits restantes no tienen un nivel lógico definido, así mismo tomar en cuenta la asignación de los motores que depende de la tarjeta del microcontrolador empleada.

Laboratorio de Microcomputadoras Práctica No. 6 Convertidor Analógico/Digital

Objetivo. Familiarizar al alumno con el uso y aplicación del Convertidor Analógico/Digital de un microcontrolador.

Introducción

El microcontrolador PIC16F877 tiene 8 posibles canales de entrada por los cuales se pueden procesar señales analógicas, de 8 o 10 bits de resolución.

Los registros involucrados para este periférico son los mostrados a continuación, la dirección y banco donde están ubicados se pueden consultar en la información dada en la práctica uno.

ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	-	ADON
ADCS1:AI CHS2-0 GO/DONE ADON	DCS0	Seleccionan la frecuencia de reloj Selección del canal de entrada Si GO/DONE=1; inicia el proceso de conversión Si GO/DONE=0; terminó la conversión Enciende al convertidor A/D						
ADCON1	ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0
ADFM		El resulta ADRESH reflejado c Si ADFM (los seis bi Si ADFN ADRESL(cero)	ndo de l ADRESI le la sigui =1; el re its más sig M=0; el (Los seis	a conver L, forman eente man sultado e gnificativ resultad bits mend	rsión se ado un da era: s justifica os de este do es j os signific	almacena o ato de 10 bi ado en el re registro val ustificado cativos de es	en los n its, pudic egistro A len cero) en el ste regist	egistros ndo ser DRESH registro ro valen
PCFG3-0		Configura a los puertos paralelos A y E como entradas al convertidor A/D; en el caso de utilizar ambos puertos como entradas analógicas, se configuran estas banderas en cero.						
ADRESH								
Parte alta d	el resultado	de la conv	ersión					
ADRESL								
Parte baja del resultado de la conversión								

Un algoritmo a emplear para el uso del convertidor A/D, con resolución de 8 bits:

- 1. Estando en el banco cero, limpiar el puerto A, usando CLRF PORTA.
- 2. Cambiar al banco uno.
- 3. Configurar el puerto A como entradas analógicas, escribir 00H al registro ADCON1.
- 4. Realizar la configuración de la fuente de reloj, el canal de entrada y prender al convertidor A/D, en el registro ADCON0.
- 5. Iniciar la conversión colocando un '1' a la bandera GO/DONE#.
- 6. Generar un tiempo de retardo de 20 microsegundos.
- 7. Esperar a que GO/DONE# sea igual a cero, lo que indica que ha concluido el proceso de conversión.
- 8. Lee el resultado de la conversión del registro ADRESH.

Desarrollo. Realizar los programa solicitados y comprobar su funcionamiento.

1.- Empleando el canal de su elección del convertido A/D, realizar un programa en el cuál, de acuerdo a una entrada analógica que se ingrese por este canal, se represente el resultado de la conversión en un puerto paralelo utilizar el arreglo de leds para ver la salida, como se muestra en la figura 6.1.

Figura 6.1 Circuito con lectura de una señal analógica

2.- Utilizando el circuito anterior, realizar un programa que indique si el valor del voltaje a la entrada del convertidor A/D, se encuentra entre los siguientes rangos de voltaje.

ENTRADAS	SALIDAS					
	PX2	PX1	PX0			
Ve < 1/3 Vcc	0	0	1			
1/3Vcc < Ve < $2/3$ Vcc	0	1	1			
2/3 < Ve < Vcc	1	1	1			

3.- Realizar un programa, de manera que identifique cuál de tres señales analógicas que ingresan al convertidor A/D es mayor que las otras dos; representar el resultado de acuerdo al contenido de la tabla 6.2.

Señal	PB2	PB2 PB1	
Ve1>Ve2 y Ve3	0	0	1
Ve2>Ve1 y Ve3	0	1	1
Ve3>Ve1 y Ve2	1	1	1

Circuito empleado para este ejercicio.

Figura 6.2 Tres señales analógicas

Laboratorio de Microcomputadoras Práctica No. 7 Puerto Serie SCI (Asíncrono)

Objetivo. Familiarizar al alumno en el uso de una Interfaz de Comunicación Serie Asíncrona de un microcontrolador.

Introducción

El microcontrolador PIC16F877 contiene un módulo USART, el cuál permite la comunicación de tipo Asíncrona, con el uso de los pines RC6 y RC7 del puerto C, la velocidad de comunicación se configura por software, dentro de una gama amplia de valores, además de contar con banderas que indican la terminación, ya sea de la trasmisión o la recepción de datos.

Registros ocupados en la comunicación serie:

Registro usado en el módulo generador de Baud Rate

SPBRG				

Con este registro se configura la velocidad de comunicación utilizando una expresión matemática para encontrar un valor de 8 bits que será cargado en el, la velocidad y fórmula dependerá de valor que sea cargado la bandera BRGH del registro TXSTA

Registro usado en el módulo transmisor

TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D
-------	------	-----	------	------	---	------	------	------

Donde:

CSRC	Bit de selección del reloj, aplicable solo en modo de comunicación síncrona
TX9	Habilita el 9° bit de trasmisión
TXEN	Activa la trasmisión
SYNC	Selección del modo de comunicación a emplear
	SYNC=0 Comunicación asíncrona
	SYNC=1 Comunicación síncrona
BRGH	Bit de selección de baudios
	BRGH=0 Baja velocidad
	BRGH=1 Alta velocidad
TRMT	Estado del registro de corrimiento de trasmisión, indica que se ha
	trasmitido el dato si esta bandera es igual a uno.
TX9D	9° bit de datos a transmitir

Registro del módulo receptor

RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
Donde:									
SPEN		Habilita el SPEN=0 I	Habilita el puerto serie SPEN=0 Deshabilitado						
RX9 SREN		SPEN=1 H Habilita el Configura síncrona	SPEN=1 Habilitado Habilita el 9° bit de recepción Configura la recepción sencilla, aplicable solo para comunicación						
CREN		Configura	la rece	pción co	ontinua e	n modo o	de comu	nicación	
ADDEN, OERR	FERR,	Indicadore	es de posi	bles error	es en la re	cepción de	e datos		
RX9D		9° bit de d	ato						
Registro de	banderas								
PIR1			RCIF	TXIE					
RCIF		Bandera d RCIF=0 R RCIF=1 R de recepci	e recepción lecepción lecepción ón RCRF	ón comple en proces completa	eta so ı; indica q	ue es posil	ole leer el	registro	
TXIF		Bandera de trasmisión completa TXIF=0 Recepción en proceso TXIF=1 Recepción completa; indica que es posible escribir otro dato al registro TXREG							
Registro de trasmisión									
TXREG									
Registro de	recepción								
RCREG									

Algoritmo de empleo del módulo USAR en la modalidad Asíncrona utilizando trasmisor y receptor en el mismo programa.

- 1. Cambiar al banco uno
- 2. Configura la bandera BRGH para seleccionar alta o baja velocidad
- 3. Cargar el valor correspondiente a la velocidad requerida (consultar los valores del data sheet)
- 4. Configurar el modo asíncrono SYNC=0 del registro TXSTA
- 5. Habilita la trasmisión TXEN=1 del registro TXSTA
- 6. Regresar al banco cero
- 7. Habilita la recepción de datos CREN=1 del registro RCSTA
- 8. Habilita el puerto serie SPEN del registro RCSTA
- 9. Realizar la operación deseada por el programa
 - a. Trasmisión: Escribir el dato al registro TXREG y esperar a la trasmisión del mismo, esperar a que TRMT=1 en el registro TXSTA (considerar que este registro está ubicado en el banco uno)
 - b. Recepción: Esperar hasta que la bandera RCIF del registro PIR=1, indicador de recepción completa (tomar en cuenta que este registro esta ubicado en el banco cero)

Desarrollo. Realizar los siguientes apartados:

1.- Utilizando el programa resuelto en la practica No. 3, ejercicio 2 (Control de acciones), realizar las modificaciones necesarias para que ahora se controle por medio del teclado de su PC, el cuál transmitirá el comando de la acción a ejecutar.

Abrir una Terminal, usando la Hyper Terminal que contiene Windows o la Terminal incluida en el IDE PIC C Compiler, consultar los apéndices A y B.

TECLA	ACCION					
	Puerto B					
0	Todos los bits del puerto apagados					
1	Todos los bits del puerto encendidos					
2	Corrimiento del bit más significativo hacia					
	la derecha					
3	Corrimiento del bit menos significativo					
	hacia la izquierda					
4	Corrimiento del bit más significativo hacia					
	la derecha y a la izquierda					
5	Apagar y encender todos los bits.					

Tabla 7.1 Controla a través del puerto serie

2.- Realizar un programa que muestre las vocales (mayúsculas y minúsculas en un display de 7 segmentos, las cuales serán enviadas vía serie a través del teclado de la PC.

Figura 7.1 Control de despliegue de vocales

3.- Empleando el programa No. 3 de la práctica 6 (convertidor analógico digital), realizar las modificaciones necesarias para desplegar el número de canal, de valor mayor a las otras entradas, en el monitor de la PC.

Laboratorio de Microcomputadoras Práctica No. 8 Puerto serie y programación en C

Objetivo. Realización de programas a través de programación en C y empleo del puerto serie para visualización y control.

Introducción

Consultar la información contenida en el apéndice C, D y la ayuda del compilador.

Desarrollo. Realizar los siguientes ejercicios.

1.- Escribir, comentar, compilar y ejecutar el siguiente programa usando el ambiente del PIC C Compiler.

```
#include <16f877.h>
#fuses HS,NOPROTECT,
#use delay(clock=20000000)
#org 0x1F00, 0x1FFF void loader16F877(void) {}
```

```
void main(){
while(1){
    output_b(0x01);
    delay_ms(1000);
    output_b(0x00);
    delay_ms(1000);
}//while
}//main
```

2.- Modificar el programa para que active y desactive todos los bits del puerto B.

3.- Escribir, comentar, compilar y ejecutar el siguiente programa usando el ambiente del PIC C Compiler.

```
#include <16f877.h>
#fuses HS,NOPROTECT,
#use delay(clock=2000000)
#org 0x1F00, 0x1FFF void loader16F877(void) { } //for the 8k 16F876/7
int var1;
void main(){
while(1){
    var1=input_a();
    output_b(var1);
    }//while
}//main
```

4.- Escribir, comentar, compilar y ejecutar el siguiente programa usando el ambiente del PIC C Compiler.

```
#include <16f877.h>
#fuses HS,NOPROTECT,
#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
#org 0x1F00, 0x1FFF void loader16F877(void) {} //for the 8k 16F876/7
```

```
void main(){
while(1){
    output_b(0xff); //
    printf(" Todos los bits encendidos \n\r");
    delay_ms(1000);
    output_b(0x00);
    printf(" Todos los leds apagados \n\r");
    delay_ms(1000);
}//while
}//main
```

Para comprobar el funcionamiento de este programa debe cerrar el Picdownloader y abrir una Terminal de comunicación, tal como se explicó en la práctica 7.

5.- Realizar las modificaciones necesarias al ejercicio 2 de la práctica tres para que ahora el comando que selecciona la acción sea a través del puerto serie, usar retardos de $\frac{1}{2}$ segundos, usando programación en C.

DATO	ACCION	Ejecución
	Puerto B	
0	Todos los bits apagados	00000000
1	Todos los bits encendidos	11111111
2	Corrimiento del bit más significativo	10000000
	hacia la derecha	
		00000001
3	Corrimiento del bit menos significativo	00000001
	hacia la izquierda	
		10000000
4	Corrimiento del bit más significativo	10000000
	hacia la derecha y a la izquierda	•••••••
		00000001
		••••••
		10000000
5	Apagar y encender todos los bits.	00000000
		11111111

Tabla 8.2 Control a través del puerto serie

Laboratorio de Microcomputadoras Prá ctica No. 9 Programación C, Convertidor A/D e Interrupciones

Objetivo. Realización de programas usando programación en lenguaje C, utilización del puerto serie, convertidor analógico digital e introducción a aplicaciones con interrupciones.

Introducción

Funciones recomendadas para esta practica:

- Convertidor analógico digital
 - o #device ADC=8
 - o setup_port_a(ALL_ANALOG);
 - o setup_adc(ADC_CLOCK_INTERNAL);
 - o set_adc_channel(num);
 - o delay_us(20);
 - o read_adc();
- Interrupciones
 - o enable_interrupts(fuente);
 - o enable_interrupts(GLOBAL)
 - Colocar la rutina de atención a la interrupción antes del main
 - o Fuentes de interrupción usadas en esta práctica
 - #INT_RB ; cambio de nivel del los cuatro bits más significativos del puerto B
 - #INT_RTCC; Sobreflujo del Timer0
- Funciones para uso del TIMER0
 - set_timer0(0) ;inicia el timer0 en 00H
 - setup_counters(RTCC_INTERNAL,RTCC_DIV_256); configura la razón de tiempo en la que TOIF se prenderá; en este caso será t=Tciclo de reloj(255)(256), donde 256 es el pre-escalador, Tciclo=4/XTAL y 255 l cantidad de pulsos requeridos para que a partir del valor cargado al timer0, se produzca un sobreflujo.
 - o enable_interrupts(INT_RTCC); habilita la interrupción TIMER0

Plantilla de la rutina de interrupción del timer 0

#int_rtcc
clock_isr(){
 //código de la rutina
}

- Funciones para uso de PB4 al PB7
 - Enable_interrupts(INT_RB): habilita interrupción por cambio de nivel en los cuatro bits más significativos del puerto B

Plantilla de interrupción de puerto B (PB4-PB7)

```
#int_rb
port_rb(){
    //código de la rutina de interrupción
    }
Finalmente el programa que empleará las interrupciones tendrá la siguiente forma:
#include <16f877.h>
#device adc=8 //en caso de emplear el conv. A/D indica resolución de 8 bits
... //configuración general
```

... //declaración de variables #int_rtcc // rutina de interrupción del timer0 clock_isr(){ //código de la rutina de interrupción }

main() { set_timer0(0); // Inicia TIMER0 en 00H setup_counters(RTCC_INTERNAL,RTCC_DIV_256); //Fuente de reloj y pre-divisor enable_interrupts(INT_RTCC); //Habilita interrupción por TIMER0 enable_interrupts(GLOBAL); //Habilita interrupciones generales

// programa principal

}

Desarrollo. Realizar los siguientes ejercicios.

1.- Programa el cual obtenga una señal analógica a través del canal de su elección, se realice la conversión y el resultado de esta, la muestre en un puerto paralelo y a su vez lo trasmita al puerto serie.

2.- Utilizando la interrupción del TIMERO, realizar un programa que transmita el resultado de la conversión cada 10 segundos.

3.- Realizar un programa el cual constantemente transmita el resultado de la conversión a la terminal, y cada 30 segundos interrumpa la ejecución de este y envíe el siguiente texto "Laboratorio de Microcomputadoras"

4.- Utilizando la interrupción por cambio de nivel del puerto paralelo, realizar un programa que reconozca un flanco positivo en los pines PB4, PB5, PB6 o PB7 del puerto B, y cuando se presente, envíe a la terminal el siguiente texto; de acuerdo a la entrada en la que ha ocurrido el evento.

Interrupción PB4 Activada Interrupción PB5 Activada Interrupción PB6 Activada Interrupción PB7 Activada

Cuando se detecte la transición de alto a bajo, se debe mostrar:

Pulso de bajada